Poststatin, a New Inhibitor of Prolyl Endopeptidase

VI. Endopeptidase Inhibitory Activity of Poststatin Analogues Containing Pyrrolidine Ring

Makoto Tsuda, Yasuhiko Muraoka, Tetsuya Someno ${ }^{\dagger}$, Machiko Nagai, Takaaki Aoyagi ${ }^{\dagger \dagger}$ and Tomio Takeuchi
Institute of Microbial Chemistry, 3-14-23, Kamiosaki, Shinagawa-ku, Tokyo 141, Japan
${ }^{\dagger}$ Research and Development Division, Pharmaceuticals Group, Nippon Kayaku Co., Ltd., 3-31-12, Shimo, Kita-ku, Tokyo 115, Japan
${ }^{\dagger \dagger}$ Department of Hygienic Chemistry, Showa College of Pharmaceutical Sciences, 3-Chome Higashitamagawagakuen, Machida-shi, Tokyo 194, Japan

(Received for publication March 25, 1996)

Abstract

Several pyrrolidine-containing analogues of poststatin were synthesized and examined for their inhibitory activity against prolyl endopeptidase and cathepsin B in vitro. Replacement of the postine residue with 2-oxo-2-(2-pyrrolidinyl)acetic acid increased the selectivity and inhibitory activity against prolyl endopeptidase. Benzyloxycarbonyl-L-phenylalanyl-(S)-2-oxo-2-(2-pyrrolidinyl)acetyl-d-phenylalanine was about 46 times as active to prolyl endopeptidase as natural poststatin.

Poststatin (PST), a new inhibitor of prolyl endopeptidase (PEP), with a structure of $\mathrm{L}-\mathrm{Val-L-Val-(S)-3-amino-}$ 2-oxovaleryl-D-Leu-L-Val, has been isolated from a culture filtrate of Streptomyces viridochromogenes MH534$30 \mathrm{~F} 3^{1 \sim 3)}$.

In the preceding paper ${ }^{4)}$, we synthesized thirty analogues of PST containing a β-substituted- β-amino- α oxopropionic acid residue and described the relationship between structure and the inhibitory activity to some serine and cysteine endopeptidases.

Low molecular weight inhibitors of PEP have been widely studied. Proline containing chloromethyl ketone derivatives or peptide aldehyde analogues such as ben-
zyloxycarbonyl (abbreviated as Z)-Gly-Pro- $\mathrm{CH}_{2} \mathrm{Cl}$ or Z-Pro-prolinal were designed, synthesized, and found to show strong inhibitory activity to PEP by Yoshimoto in 1977^{5}) and Wilk in 1983^{6}. Recently, thiazolidine derivatives such as Z-thiopro-thiazolidine and pyrrolidine derivatives such as $1-$ (N-(4-phenylbutyryl)-Pro)-pyrrolidine were reported as another type inhibitor of PEP by Tsuru in $1988^{7)}$ and Saito in $1991^{8)}$.

In comparison with these structure, PST included a unique β-amino- α-oxocarboxylic acid residue in it and had another two amino acid residues at the P_{1}^{\prime} and P_{2}^{\prime} positions. The latter suggests it is possible to modify or replace with suitable structures the subsite of each

Scheme 1. Synthesis of key intermediate of pyrrolidine analogues.

endopeptidase.
In order to increase the selectivity for PEP we replaced 2-oxo-2-(2-pyrrolidiny)acetic acid for 3-amino-2oxovaleric acid (named as postine, abbreviated as Pos) as the derivative of β-amino- α-oxocarboxylic acid. The synthesis of (RS)-2-hydroxy-2-((S)-2-pyrrolidinyl)acetic acid was shown in Scheme 1.
In this paper, we report the synthesis of a new type of pyrrolidine derivatives as potential inhibitors of PEP, and inhibitory activity against PEP as contrasted with cathepsin B in vitro.

Results and Discussion

The results obtained are summarized in Table 1. The effect of introducing a pyrrolidine ring at \mathbf{P}_{1} was clearly demonstrated. Replacement of Pos with 2-oxo-2-(2pyrrolidinyl)acetic acid residue (No, 2 vs No. 1) increased the inhibitory activity against PEP significantly, and markedly decreased the inhibitory activity against cathepsin B. The N - and C-terminal protected derivatives of pyrrolidine analogue 2 (No. 4) also showed stronger inhibitory activity against PEP than Pos-containing analogue (No. 3). Therefore, pyrrolidine ring at the P_{1}

Table 1. Relationship between structure and endopeptidase inhibitory activities.

Compound No.	Structure							$\mathrm{IC}_{50}(\mu \mathrm{~g} / \mathrm{ml})$	
	P_{4}	P_{3}	P_{2}	P_{1}	P_{1}^{\prime}	P_{2}^{\prime}	P_{3}^{\prime}	PEP	Cat-B
$1^{\text {a }}$		Val-	Val-	(S)Pos-	D-Leu-	Val		0.030	2.1
2		Val-	Val-	(S)ProCO-	D-Leu-	Val		0.0015	>100
3	Z-	Val-	Val-	(S) Pos-	D-Leu-	Val-	OBzl	1.0	100
4	Z-	Val-	Val-	(S)ProCO-	D-Leu-	Val-	OBzl	0.0027	>100
$5{ }^{\text {b }}$		Z-	Phe-	($R S$) Pos-	D-Leu-	Val-	$\mathrm{OBu}^{\text {t }}$	0.11	>100
$6^{\text {b }}$		Z-	Phe-	($R S$) Pos-	D-Leu-	Val		0.0070	0.64
$7^{\text {b }}$		Z-	Phe-	($R S$) Pos-	D-Leu-	OBu^{\prime}		0.031	0.48
$8^{\text {b }}$		Z-	Phe-	($R S$) Pos-	D-Leu-			0.12	0.47
9		Z-	Phe-	(S ProCO-	D-Leu-	Val-	OBzl	0.0024	>100
10		Z-	Phe-	(S ProCO-	D-Leu-	OBu^{t}		0.0020	>100
11		Z-	Phe-	(S)ProCO-	D-Leu			0.0013	>100
$12^{\text {b }}$		Val-	Val-	($R S$) Pos-	D-Leu-	Val		0.29	34
$13^{\text {b }}$		Val-	Val-	($R S$) Pos-	Leu-	Val		12	0.040
(10)		Z-	Phe-	(S) ProCO-	D-Leu-	OBu^{t}		0.0020	>100
14		Z-	Phe-	(S)ProCO-	Leu-	OBu^{t}		0.0018	>100
(11)		Z-	Phe-	(S)ProCO-	D-Leu			0.0013	>100
15		Z-	Phe-	(S)ProCO-	Leu			0.00084	29
(10)		Z-	Phe-	(S ProCO-	D-Leu-	OBu^{t}		0.0020	>100
16		Z-	Phe-	(S) ProCO-	D-Phe-	$\mathrm{OBu}^{\text {t }}$		0.0013	>100
17		Z-	Phe-	(S) ProCO-	Gly-	$\mathrm{OBu}^{\text {t }}$		0.00080	>100
(11)		Z-	Phe-	(S)ProCO-	D-Leu			0.0013	>100
18		Z-	Phe-	(S)ProCO-	D-Phe			0.00065	100
19		Z-	Phe-	(S)ProCO-	Gly			0.0011	120
20		Z-	Phe-	(S)ProCO-	NHcHx			0.0012	20
(7)		Z-	Phe-	(RS)Pos-	D-Leu-	OBu^{t}		0.031	0.48
21			Z-	(RS)Pos-	D-Leu-	OBu^{t}		2.0	>100
(9)		Z-	Phe-	(S)ProCO-	D-Leu-	Val-	OBzl	0.0024	>100
22		Boc-	Val-	(S)ProCO-	D-Leu-	Val-	OBzl	0.0024	>100
23		Z-	Hph-	(S)ProCO-	D-Leu-	$\mathrm{OBu}^{\text {t }}$		0.0018	>100
(10)		Z-	Phe-	(S)ProCO-	D-Leu-	OBu^{t}		0.0020	>100
24			Dmb-	(S)ProCO-	D-Leu-	OBu^{t}		0.017	>100
25			Z-	($R S$) ProCO-	D-Leu-	OBu^{t}		0.046	>100
26		Z-	Phe-	(S) ProCO-	D-Leu-	NHBu ${ }^{\text {t }}$		0.0014	>100
27			$\mathrm{cHxCO}-$	(S)ProCO-	D-Leu-	NHBu ${ }^{\text {t }}$		0.25	>100
28			Bz-	(S ProCO-	D-Leu-	$\mathrm{NHBu}^{\text {r }}$		0.056	>100
29			$\mathrm{Bz}-$	(5 ProCO-	Gly-	$\mathrm{OBu}^{\text {t }}$		0.035	>100

a Natural poststatin.
b These compounds were described in the previous paper ${ }^{4}$.
Compounds in parentheses are also listed earlier in the table. Abbreviations; PEP: prolyl endopeptidase, Cat-B: cathepsin B, Pos: postine, 3-amino-2-oxovaleric acid residue, ProCO: 2-oxo-2-(2-pyrrolidinyl)acetic acid residue, Z: benzyloxycarbonyl, Bzl: benzyl, Bu^{t} : t-butyl, cHx: cyclohexyl, Hph: homophenylalanine residue, Dmb: 3,3-dimethylbutyryl, Bz: benzoyl.
is important for PEP inhibition.
As reported in our previous paper ${ }^{4}$, replacement of the P_{2} and P_{3} of poststatin by Z-Phe increased the inhibitory activity against PEP. Therefore pyrrolidine derivatives containing Z-Phe at P_{2} and P_{3} were synthesized. The Pos-containing analogue (No. 5), in which the C-terminal of P_{2}^{\prime} at active analogue 6 was esterificated, decreased the inhibitory activity against PEP. The Pos-containing analogue (No. 8), in which P_{2}^{\prime} residue was deleted from active analogue 6 or 7 , also showed weak inhibitory activity. In contrast with Poscontaining analogues, the pyrrolidine analogues (No. 9 and 10) showed about the same strong inhibitory activity as analogue $\mathbf{1 1}$ in spite of the modification at P_{3}^{\prime} or P_{2}^{\prime}. Therefore, the influence of P_{3}^{\prime} or P_{2}^{\prime} is smaller in pyrrolidine-containing peptides than in Pos-containing peptides.

To estimate the effect of the stereochemistry at P_{1}^{\prime}, we synthesized L-Leu analogues at P_{1}^{\prime} (No. 14 and 15). In the Pos-containing analogues (No. 12 and 13), replacement of D-Leu by L-Leu decreased the inhibitory activity against PEP significantly. In contrast, the pyrrolidine analogues (No. 14 and 15) showed strong inhibitory activity against PEP as well as analogues $\mathbf{1 0}$ and $\mathbf{1 1}$ in which P_{1}^{\prime} positions were $\mathrm{D}-\mathrm{Leu}$. Therefore, the D configuration at the P_{1}^{\prime} is not essential for pyrrolidine-containing peptides.
Analogues, in which \mathbf{P}_{1}^{\prime} of analogues $\mathbf{1 0}$ and $\mathbf{1 1}$ were replaced by D-Phe (No. 16 and 18) and Gly (No. 17 and 19) were synthesized. Moreover, analogue 20, in which P_{1}^{\prime} was not an amino acid residue but a cyclohexylamine component was prepared. All these analogues showed strong inhibitory activity against PEP, and among them analogue $\mathbf{1 8}$ showed about 46 times as much active as natural PST (No. 1). Therefore, the contribution of P_{1}^{\prime} in the pyrrolidine-containing peptides is small though P_{1}^{\prime} in the Pos-containing peptides was important.

In the Pos-containing peptides, deletion of the amino acid residue at P_{2} markedly decreased the inhibitory activity against PEP (No. 21). Pyrrolidine analogues 24, $\mathbf{2 5}, \mathbf{2 7} \sim \mathbf{2 9}$, in which amino acid residues at P_{2} were deleted showed lower inhibitory activity against PEP than the analogues having an amino acid residue at P_{2} (No. 9, 22, 23, 10 and 26). Some of the analogues lacking the amino acid residue at P_{2} maintained about the same inhibitory activity as natural PST. Among these short pyrrolidine analogues, analogue 24 was about 1.8 times more potent than natural PST in its inhibitory activity. Therefore, the presence of one amino acid residue at P_{2} is preferable for strong inhibition against PEP, but
P_{2}-deleted analogues have still inhibitory potency against PEP.

Experimental

General

Melting points were determined on a micro melting point apparatus and are uncorrected. Optical rotations were measured with a Perkin-Elmer 241 polarimeter. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at $400 \mathrm{MHz}, 270 \mathrm{MHz}$ or 200 MHz with a JEOL JNM-GX400, JNM-EX270 or a Varian GEMA-200 spectrometer respectively. FABMS spectra were measured on a JEOL JMS-SX102 or VG ZAB-HF mass spectrometer respectively. TLC was carried out on Merck precoated silica gel $60 \mathrm{~F}_{254}$ plates. Abbreviations used in the following section were defined in the above section and Table 1.

Enzyme Assay

Inhibitory activities of PEP and cathepsin B were measured by the procedure described in the previous paper ${ }^{1)}$.

Synthesis

Synthesis of $(R S)$-2-[(S)-2-(1-t-Butoxycarbonylpyrroli-dinyl)]-2-hydroxyacetic Acid (Boc- $\mathrm{H}_{2} \mathrm{ProCO}, 30$)

Z-L-Prolyl-3,5-dimethylpyrazolide (31)

To a solution of Z-L-proline ($37.35 \mathrm{~g}, 150.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{ml})$ was added 3,5-dimethylpyrazole ($14.45 \mathrm{~g}, 150.0 \mathrm{mmol}$) and dicyclohexylcarbodiimide (abbreviated as DCC, $30.95 \mathrm{~g}, 150.0 \mathrm{mmol}$) at $-15^{\circ} \mathrm{C}$, and the resulting solution was chilled in an ice bath for 30 minutes and then left at room temperature overnight. After removal of the undissolved material, the solvent was evaporated, and the residual oil was dissolved in EtOAc (500 ml). The organic layer was washed with saturated aq $\mathrm{NaHCO}_{3}(200 \mathrm{ml}), 5 \%$ aq citric acid (200 $\mathrm{ml})$ and saturated aq $\mathrm{NaCl}(200 \mathrm{ml})$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent gave an oil of 31, 48.82 g (99.5%): Rf $0.73\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 30: 1\right) ;[\alpha]_{\mathrm{D}}^{20}-41.3^{\circ}$ $(c 1.0, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.86 \sim 2.18$ $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHaHb}\right), 2.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), c a .2 .30 \sim 2.58$ ($1 \mathrm{H}, \mathrm{m}$, overlapping, CHaHb), 2.44, $2.54(1.5 \mathrm{H}, 1.5 \mathrm{H}$, two s, $\left.\mathrm{CH}_{3}\right), 3.45 \sim 3.85\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 5.02,5.16$ and $5.10,5.21(1 \mathrm{H}$ and 1 H , two ABq , each $J=12.0 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 5.59,5.64(0.5 \mathrm{H}, 0.5 \mathrm{H}$, two t , each, $J=3.6 \mathrm{~Hz}$, $\alpha-\mathrm{CH}$ (Pro)), $5.95(1 \mathrm{H}$, br s, olefinic CH$), 7.08 \sim 7.45(5 \mathrm{H}$, m, Ph).

Boc- H_{2} ProCO

To a suspension of $\mathrm{LiAlH}_{4}(10.62 \mathrm{~g}, 279.8 \mathrm{mmol})$ in dry THF (300 ml) was added a solution of $31(114.5 \mathrm{~g}$, $349.7 \mathrm{mmol})$ in dry THF (120 ml) over a period of 1 hour keeping the temperature at -15 to $-20^{\circ} \mathrm{C}$ in an argon atmosphere. After standing for another 1.5 hours at the same temperature, the reaction mixture was cooled to
$-60^{\circ} \mathrm{C}$ and the mixture was diluted with THF (100 ml). $3 \mathrm{~N} \mathrm{HCl}(900 \mathrm{ml})$ was added slowly at the temperature below $-40^{\circ} \mathrm{C}$. After removal of $\mathrm{Al}(\mathrm{OH})_{3}$ by filtration, the filtrate was concentrated. The aqueous layer was extracted twice with EtOAc (300 ml). The combined organic layer was washed with saturated aq NaHCO_{3} (300 ml), saturated aq $\mathrm{NaCl}(300 \mathrm{ml} \times 2$) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent gave an oil of crude Z-L-prolinal (56.7 g). To the Z-L-prolinal in EtOAc $(78 \mathrm{ml})$ was added aq solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(95 \% ; 48.64 \mathrm{~g}$, 243.1 mmol) in water (78 ml) and the mixture was stirring overnight. The aqueous layer was separated, and added water to 300 ml . To the solution of NaHSO_{3} adduct was added EtOAc (300 ml) and aq solution of $\mathrm{NaCN}(11.91 \mathrm{~g}$, 243.0 mmol) in water (80 ml) in an ice bath. After standing for 30 minutes at $0^{\circ} \mathrm{C}$, the reaction mixture was stirred for 4 hours at room temperature. The organic layer was separated and washed twice with saturated aq NaCl $(180 \mathrm{ml})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent gave an oil of (RS)-2-[(S)-2-(1-benzyloxycarbonylpyrroli-dinyl)]-2-hydroxyacetonitrile (32; $34.3 \mathrm{~g}, 131.8 \mathrm{mmol}$).

To the 32 was added $12 \mathrm{~N} \mathrm{HCl}(70 \mathrm{ml})$ and dioxane $(70 \mathrm{ml})$, and refluxed for 36 hours. Evaporation of the solvent and decantation twice with ether (100 ml) gave a solid of (RS)-2-hydroxy-2-((S)-2-pyrrolidinyl)acetic acid hydrochloride $(33 \cdot \mathrm{HCl})$.

To a solution of $33 \cdot \mathrm{HCl}$ in water $(100 \mathrm{ml})$ and dioxane $(100 \mathrm{ml})$ was added triethylamine $(13.8 \mathrm{~g}, 136.4 \mathrm{mmol})$ and di-t-butyl dicarbonate $(28.76 \mathrm{~g}, 131.8 \mathrm{mmol})$ in an ice bath, and stirred at room temperature overnight. After concentration of the solvent, the residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ and acidified with phosphoric acid. The mixture was extracted twice with EtOAc (200 ml), washed thrice with saturated aq $\mathrm{NaCl}(150 \mathrm{ml})$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent and decantation twice with petroleum ether - ether ($4: 1$) gave a white powder of $\mathbf{3 0}$, $19.95 \mathrm{~g}(23.3 \%)$: Rf $0.36,0.44\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{AcOH}\right.$, 90:10:5); FAB-MS $m / z 244(\mathrm{M}-\mathrm{H})^{-} ;{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.46(9 \mathrm{H}, \mathrm{s}, \mathrm{Boc}), 1.60 \sim 2.37(4 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), $3.20 \sim 3.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 4.14,4.44$ $(1.5 \mathrm{H}, 0.5 \mathrm{H}$, two brs, CHCH$), 6.53(2 \mathrm{H}, \mathrm{br}, \mathrm{OH}$, $\mathrm{COOH})$.

General Procedure A: Deprotection of Boc and t-Butyl Ester Groups

A solution of Boc-peptide or peptide t-butyl ester in TFA ($0.7 \sim 1.4 \mathrm{ml} / 100 \mathrm{mg}$ of substrate) was stirred at room temperature for 40 minutes (for Boc-peptide) or 120 minutes (for peptide t-butyl ester). The solution was evaporated, and the residue was coevaporated twice with toluene.

General Procedure B: Coupling Reaction

To the amine component (1 equiv) was added Boc- or Z-amino acid (acid component, $1 \sim 1.1$ equiv), and 1-hydroxybenzotriazole ($1.5 \sim 2$ equiv) in DMF or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. N-Methylmorpholine or triethylamine (1 equiv, in case of TFA or HCl salt as a starting material) and

1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (abbreviated as $\mathrm{EDC} \cdot \mathrm{HCl}, 1.4$ equiv) was added under ice cooling, and the mixture was stirred in an ice bath for 2 hours and at room temperature for $6 \sim 17$ hours. The completion of the reaction was monitored by TLC. The mixture was diluted with EtOAc (no dilution in case of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as a solvent), and the mixture was washed with 4% aq NaHCO_{3}, saturated aq $\mathrm{NaCl}, 1 \%$ aq citric acid, and saturated aq NaCl . The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was evaporated.

Typical Synthetic Procedure of Boc-based Stepwise Elongation

Boc- H_{2} ProCO-D-Leu-L-Val-OBzl (35)

Boc-D-Leu-L-Val-OBzl ${ }^{9}$ ($\mathbf{3 4 ;} 605.1 \mathrm{mg}, 1.439 \mathrm{mmol}$) was deprotected according to the general procedure A , and was coupled to $\mathbf{3 0}$ ($390.1 \mathrm{mg}, 1.590 \mathrm{mmol}$) according to the general procedure B to give crude 35 . The product was purified by silica gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(100: 1)$ to give 35 as a solid, 707.1 mg (89.7%): $\operatorname{Rf} 0.48, \quad 0.59\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, \quad 20: 1\right)$; FAB-MS $m / z 548(\mathrm{M}+\mathrm{H})^{+}, 448,358,321,213,208$, 114, 91, 70, 57.

Boc-L-Val- H_{2} ProCO-d-Leu-L-Val-OBzl (36)

Crude 36 was obtained, in a manner similar to that described in the preparation of 35 , by coupling reaction of TFA salt of deprotected $35(1.290 \mathrm{mmol})$ with Boc-Val $(308.4 \mathrm{mg}, 1.419 \mathrm{mmol})$. The product was purified by silica gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ ($100: 1$) to give 36 as an amorphous solid, 672.4 mg (80.6%): Rf $0.34\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 20: 1\right) ;$ FAB-MS m / z $647(\mathrm{M}+\mathrm{H})^{+}, 547,448,91,70,57$.

Z-L-Val-L-Val- H_{2} ProCO-D-Leu-L-Val-OBzl (37)

Crude 37 was obtained, in a manner similar to that described in the preparation of 35 , by coupling reaction of TFA salt of deprotected $36(0.729 \mathrm{mmol})$ with Z-Val $(201.4 \mathrm{mg}, 0.802 \mathrm{mmol})$. The product was purified by silica gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ ($100: 1 \sim 100: 2$) to give 37 as an amorphous solid, $542.1 \mathrm{mg}(95.4 \%): \operatorname{Rf} 0.31\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 20: 1\right)$; FAB-MS $m / z 780(\mathrm{M}+\mathrm{H})^{+}, 573,538,448,333,234$, 208, 91, 70.

Z-L-Val-L-Val-(S)-ProCO-D-Leu-L-Val-OBzl (4)

A mixture of $37(386.8 \mathrm{mg}, 0.496 \mathrm{mmol})$, pyridinium trifluoroacetate $(48.6 \mathrm{mg}, 0.252 \mathrm{~mol}), \mathrm{EDC} \cdot \mathrm{HCl}(287.3$ $\mathrm{mg}, 1.499 \mathrm{mmol}$), anhydrous DMSO (4.0 ml) was stirred at room temperature for 23 hours. The reaction mixture was diluted with EtOAc $(40 \mathrm{ml})$ and washed with water $(30 \mathrm{ml})$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After evaporation of the solvent, the product was purified by silica gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeCN}(20: 1 \sim 20: 7)$ to give 4 as an amorphous solid, $200.8 \mathrm{mg}(52.0 \%)$: Rf 0.41 $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 20: 1\right) ; \mathrm{mp} 81 \sim 83^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{27}-31.0^{\circ}(c$
2.9, CHCl_{3}); FAB-MS $m / z 778(\mathrm{M}+\mathrm{H})^{+}, 446,333,234$, 91, 70; ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.77 \sim 1.10(24 \mathrm{H}$, $\left.\mathrm{m}, \quad \mathrm{CH}_{3} \times 8\right), \quad 1.50 \sim 2.44(10 \mathrm{H}, \quad \mathrm{m}, \quad \beta-\mathrm{CH} \times 3(\mathrm{Val})$, $\beta-\mathrm{CH}_{2}(\mathrm{Leu}), \gamma-\mathrm{CH}(\mathrm{Leu}), \mathrm{CH}_{2} \mathrm{CH}_{2}$ (pyrrolidinyl)), 3.63 (1 H , br ddd, NCHaHb), 3.84 (1 H , brddd, NCHaHb), 4.05 ($1 \mathrm{H}, \quad$ brdd, $\alpha-\mathrm{CH}(\mathrm{Val})$), 4.47 ($1 \mathrm{H}, \quad$ brddd, $\alpha-\mathrm{CH}(\mathrm{Leu})), 4.55(1 \mathrm{H}, \mathrm{dd}, J=4.6,8.6 \mathrm{~Hz}, \alpha-\mathrm{CH}(\mathrm{Val}))$, $4.60(1 \mathrm{H}, \mathrm{brdd}, \alpha-\mathrm{CH}(\mathrm{Val}))$, ca. $5.11,5.17(2 \mathrm{H}, \mathrm{ABq}$, overlapping, $J=12.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), ca. $5.09, c a .5 .11$ (2 H , ABq , overlapping, $J=13.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}$), $5.25 \sim 5.44(2 \mathrm{H}$, m, CH (pyrrolidinyl), $\mathrm{NH}(\mathrm{Val})$), 6.55 ($2 \mathrm{H}, \mathrm{brd}, \mathrm{NH} \times 2$ (Val)), $7.25 \sim 7.45(11 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 2, \mathrm{NH}($ Leu $))$.

L-Val-L-Val-(S)-ProCO-d-Leu-L-Val (2)

To a solution of $4(184.0 \mathrm{mg}, 0.237 \mathrm{mmol})$ in $\mathrm{AcOH}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(6: 3: 1, \mathrm{v} / \mathrm{v}(5 \mathrm{ml}))$ was added palladium-black catalyst (18.3 mg). The mixture was hydrogenated at room temperature in a hydrogen atmosphere for 8 hours. The catalyst was filtered off, evaporation of the solvent gave an amorphous solid. This solid was subjected to Sephadex LH-20 column chromatography with $0.3 \% \mathrm{AcOH}-\mathrm{MeOH}$ to give 2, 127.4 mg (97.3%): Rf $0.42\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{AcOH}\right.$, $75: 25: 3$); mp $166 \sim 168^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{23}-46.5^{\circ}(c 0.84, \mathrm{AcOH})$; FAB-MS $m / z 554(\mathrm{M}+\mathrm{H})^{+}, 356,199,171,72,70 ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 0.65 \sim 1.05(24 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{3} \times 8\right), \quad 1.35 \sim 2.30(10 \mathrm{H}, \quad \mathrm{m}, \quad \beta-\mathrm{CH} \times 3(\mathrm{Val}), \quad \beta-$ $\mathrm{CH}_{2}(\mathrm{Leu}), \quad \gamma-\mathrm{CH}(\mathrm{Leu}), \mathrm{CH}_{2} \mathrm{CH}_{2}$ (pyrrolidinyl)), 3.15 $(1 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}, \alpha-\mathrm{CH}(\mathrm{Val})), 3.61,3.81(1 \mathrm{H}, 1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{m}, \mathrm{NCH}_{2}\right), 4.05(1 \mathrm{H}, \mathrm{dd}, J=5.3,8.6 \mathrm{~Hz}, \alpha-\mathrm{CH}(\mathrm{Val}))$, $4.37(1 \mathrm{H}, \mathrm{dd}, J=3.3,8.6 \mathrm{~Hz}, \alpha-\mathrm{CH}(\mathrm{Val})), 4.46(1 \mathrm{H}, \mathrm{m}$, $\alpha-\mathrm{CH}(\mathrm{Leu})), 5.12(1 \mathrm{H}, \mathrm{dd}, J=5.9,8.9 \mathrm{~Hz}, \mathrm{NCHCOCO})$, $8.06(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{NH}(\mathrm{Val})), 8.17(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}$, $\mathrm{NH}(\mathrm{Val})), 8.54(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{NH}($ Leu $)$).

The compounds 9 and 22 were obtained under analogous Boc-based stepwise elongation method.

9: FAB-MS $m / z 727(\mathrm{M}+\mathrm{H})^{+}, 446 ;{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.86,0.92(3 \mathrm{H}, 3 \mathrm{H}$, two d, each $\left.J=6.9 \mathrm{~Hz}, \quad \mathrm{CH}_{3} \times 2(\mathrm{Val})\right), \quad 0.96(6 \mathrm{H}, \quad \mathrm{d}, \quad J=5.9 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \times 2(\mathrm{Leu})\right), \quad 1.50 \sim 2.04(7 \mathrm{H}, \mathrm{m}, \quad \beta-\mathrm{CH}(\mathrm{Val}), \quad \beta-$ $\mathrm{CH}_{2}(\mathrm{Leu}), \gamma-\mathrm{CH}(\mathrm{Leu}), \mathrm{CH}_{2} \mathrm{CHaHb}($ pyrrolidinyl) $), 2.21$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHa} H b$ (pyrrolidinyl)), 2.93 ($1 \mathrm{H}, \mathrm{dd}, J=6.5$, $13.8 \mathrm{~Hz}, \beta-\mathrm{CHaHb}(\mathrm{Phe})), 3.08(1 \mathrm{H}$, dd, $J=7.0,13.8 \mathrm{~Hz}$, $\beta-\mathrm{CHa} H b(\mathrm{Phe})), 3.48(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHaHb}), 3.61(1 \mathrm{H}, \mathrm{m}$, $\mathrm{NCHa} H b), c a .4 .50(1 \mathrm{H}, \mathrm{m}$, overlapping, $\alpha-\mathrm{CH}(\mathrm{Leu}))$, 4.56 ($1 \mathrm{H}, \mathrm{dd}, J=4.6,8.7 \mathrm{~Hz}, \alpha-\mathrm{CH}(\mathrm{Val})), 4.69(1 \mathrm{H}$, br ddd, $\alpha-\mathrm{CH}(\mathrm{Phe})), 5.05,5.06(2 \mathrm{H}, \mathrm{ABq}$, overlapping, $\mathrm{CH}_{2} \mathrm{Ph}$), $5.10,5.18\left(2 \mathrm{H}, \mathrm{ABq}, J=12.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.34$ $(1 \mathrm{H}, \mathrm{dd}, J=5.2,8.1 \mathrm{~Hz}, \mathrm{NCHCOCO}), 5.55(1 \mathrm{H}, \mathrm{d}$, $J=8.6 \mathrm{~Hz}, \mathrm{NH}(\mathrm{Phe})), 6.56(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{NH}(\mathrm{Val}))$, $7.12 \sim 7.45$ ($16 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 3, \mathrm{NH}($ Leu $)$).

22: FAB-MS $m / z 645(\mathrm{M}+\mathrm{H})^{+}, 545,269,241,208$, 91, 70, 57, ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.85,0.88(3 \mathrm{H}$, 3 H , two d, each $\left.J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3} \times 2(\mathrm{Val})\right), 0.93,0.95(3 \mathrm{H}$, 3 H , two d, each $J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3} \times 2($ Leu $)$), $0.95,1.03$ ($3 \mathrm{H}, 3 \mathrm{H}$, two d, each $J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3} \times 2(\mathrm{Val})$), $1.42(9 \mathrm{H}$, s , Boc), $1.53 \sim 2.10\left(7 \mathrm{H}, \mathrm{m}, \beta-\mathrm{CH}(\mathrm{Val}), \beta-\mathrm{CH}_{2}(\mathrm{Leu})\right.$, $\gamma-\mathrm{CH}($ Leu $), \mathrm{CH}_{2} \mathrm{CHaHb}($ pyrrolidinyl)), $2.19(1 \mathrm{H}, \mathrm{m}$,
$\beta-\mathrm{CH}(\mathrm{Val})$), $2.33(1 \mathrm{H}, \mathrm{m}, \mathrm{CHaHb}($ pyrrolidinyl) $), 3.63$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHaHb}), 3.83(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHa} H b), 4.28(1 \mathrm{H}$, $\mathrm{dd}, J=6.4,9.4 \mathrm{~Hz}, \alpha-\mathrm{CH}(\mathrm{Val})), 4.47(1 \mathrm{H}, \alpha-\mathrm{CH}(\mathrm{Leu}))$, $4.55(1 \mathrm{H}, \mathrm{dd}, J=4.6,8.8 \mathrm{~Hz}, \alpha-\mathrm{CH}(\mathrm{Val})), 5.11,5.18(2 \mathrm{H}$, $\left.\mathrm{ABq}, J=12.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.38(1 \mathrm{H}, \mathrm{dd}, J=6.3,8.9 \mathrm{~Hz}$, $\mathrm{NCHCOCO}), 6.55(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}, \mathrm{NH}($ Val $)$), 7.26 ($1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{NH}(\mathrm{Leu})$), $c a .7 .24 \sim 7.45(5 \mathrm{H}, \mathrm{m}$, overlapping, Ph).

Typical Synthetic Procedure of Z-based Stepwise Elongation
(RS)-2-[(S)-2-(1-Benzyloxycarbonylpyrrolidinyl)]-2hydroxyacetic Acid ($\mathrm{Z}-\mathrm{H}_{2} \mathrm{ProCO}, 38$)

To the cyanohydrin (32) prepared from 31 (20.07 g , 61.3 mmol) as described for the preparation of 30 was added $12 \mathrm{~N} \mathrm{HCl}(45 \mathrm{ml})$ and dioxane (45 ml), and refluxed for 6 hours. After evaporation of the solvent, the residue $(6.36 \mathrm{~g})$ was dissolved in distilled water and deionized through a column of strong acidic ion-exchange resin (Dowex $50 \mathrm{~W}-\mathrm{X} 4(350 \mathrm{ml}), \mathrm{H}^{+}$form, 2 N aq NH_{3} as an eluent). Concentration of the ninhydrin positive eluate gave solid of $33,2.14 \mathrm{~g}(24.0 \%)$: FAB-MS $m / z 146$ $(\mathrm{M}+\mathrm{H})^{+}$.

A mixture of $33(1.60 \mathrm{~g}, 11.0 \mathrm{mmol})$, benzyl S-4,6-di-methylpyrimidin-2-ylthiocarbonate ($3.63 \mathrm{~g}, 13.2 \mathrm{mmol}$), water (6 ml), dioxane (6 ml) and triethylamine (2.30 ml , 16.5 mmol) was stirred for 3 hours at room temperature. To a reaction mixture was added water (16 ml), and unreacted carbonate was extracted twice with EtOAc (each 20 ml). The aqueous layer was cooled to $0^{\circ} \mathrm{C}$ and adjusted to pH 2 by addition of a 3 N HCl , and extracted with EtOAc (once 16 ml , twice 8 ml). The combined organic layer was washed thrice with 1 N HCl (each 10 ml), and twice with saturated aq NaCl (each 10 ml) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Evaporation of the solvent gave crude syrup (2.44 g). The product (0.78 g) was subjected to Sephadex LH-20 column chromatography with MeOH to give 38, $0.76 \mathrm{~g}(77.0 \%)$: $\mathrm{Rf} 0.35,0.46\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}-\right.$ AcOH, $18: 2: 1$); FAB-MS $m / z 278(\mathrm{M}-\mathrm{H})^{-}, 170,144$; ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.64 \sim 2.33(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.28 \sim 3.69\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 4.06 \sim 4.35,4.58$ $(1.5 \mathrm{H}, \mathrm{m}, 0.5 \mathrm{H}$, brs, CHCH), $4.99 \sim 5.29(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{PhCH} \mathrm{H}_{2} \mathrm{OCO}\right), 6.28(2 \mathrm{H}, \mathrm{br}, \mathrm{COOH}, \mathrm{OH}), 7.35(5 \mathrm{H}, \mathrm{s}$, Ph).

Z-H ${ }_{2}$ ProCO-L-Leu-OBu ${ }^{t}$ (39)

$38(201.7 \mathrm{mg}, 0.722 \mathrm{mmol})$ was coupled to L-leucine t-butyl ester hydrochloride $(161.7 \mathrm{mg}, 0.723 \mathrm{mmol})$ according to the general procedure B to give crude 39 . The product was purified by Sephadex LH-20 column chromatography with MeOH to give 39 as needle crystals, $309.7 \mathrm{mg}(95.6 \%)$: Rf $0.47,0.59\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 30: 1\right)$; FAB-MS $m / z 449(\mathrm{M}+\mathrm{H})^{+}, 393,349,315,259,204$, $160,91,70,57 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.82 \sim 1.00$ $\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \times 2\right), 1.36 \sim 2.16\left(15 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \times 3\right.$, $\beta-\mathrm{CH}_{2}(\mathrm{Leu}), \quad \gamma-\mathrm{CH}(\mathrm{Leu}), \quad \mathrm{CH}_{2} \mathrm{CHaHb}($ pyrrolidinyl $)$), $2.40(1 \mathrm{H}, \mathrm{m}, \mathrm{CHaHb}), 3.30,3.42,3.33,3.61$ (total
$2 \mathrm{H}($ each 0.5 H$)$, br dt, $\left.\mathrm{m}, \mathrm{m}, \mathrm{m}, \mathrm{NCH}_{2}\right), 4.05,4.17,4.38$ (total 2 H , br s, br t, br s, NCHCHCO), $4.40 \sim 4.53(1 \mathrm{H}$, $\mathrm{m}, \alpha-\mathrm{CH}(\mathrm{Leu})), 5.04,5.11$ and $5.17(1 \mathrm{H}, \mathrm{ABq}$, $J=12.8 \mathrm{~Hz}$, and $1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH} \mathrm{OCO}_{2} \mathrm{OCO}, 5.62,6.09(0.5 \mathrm{H}$, 0.5 H , two br, OH), $7.20(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}), 7.28 \sim 7.48(5 \mathrm{H}$, m, Ph).

Z-L-Phe- H_{2} ProCO-L-Leu-OBu ${ }^{t}$ (40)

To a solution of $39(309.6 \mathrm{mg}, 0.690 \mathrm{mmol})$ in MeOH $(10 \mathrm{ml})$ was added palladium-black catalyst $(13.4 \mathrm{mg})$. The mixture was hydrogenated at room temperature in a hydrogen atmosphere for 24 hours. The catalyst was filtered off, evaporation of the solvent gave amorphous solid of $\mathrm{H}_{2} \mathrm{ProCO}-\mathrm{L}-L e u-\mathrm{OBu}^{t} \quad(41 ; 216.9 \mathrm{mg}) . \quad 41$ ($216.9 \mathrm{mg}, 0.690 \mathrm{mmol}$) was coupled to Z-L-Phe (216.9 $\mathrm{mg}, 0.725 \mathrm{mmol}$) according to the general procedure B to give crude 40 . The product was purified by silica gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (100:1) to give $\mathbf{4 0}$ as an amorphous solid, 393.3 mg (95.7%): Rf $0.41\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 20: 1\right) ;$ FAB-MS $m / z 596$ $(\mathrm{M}+\mathrm{H})^{+}, 540,506,462,406,315,259,91,70,57 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.90,0.92$ and $0.94,0.96(3 \mathrm{H}$, two d, each $J=6.9 \mathrm{~Hz}$ and 3 H two d, each $J=6.0 \mathrm{~Hz}$ $\left.\mathrm{CH}_{3} \times 2\right), \quad 1.25 \sim 2.34\left(16 \mathrm{H}, \mathrm{m}, \quad \mathrm{OBu}^{t}, \quad \beta-\mathrm{CH}_{2}(\mathrm{Leu})\right.$, γ - $\mathrm{CH}($ Leu $), \mathrm{CH}_{2} \mathrm{CH}_{2}$ (pyrrolidinyl)), $2.82 \sim 3.10(2 \mathrm{H}, \mathrm{m}$, $\beta-\mathrm{CH}_{2}(\mathrm{Phe})$), 2.67, 3.17, 3.52, 3.84 (total 2 H (each 0.5 H$)$, br, br t, br t, br, NCH_{2}), 3.86 and $4.15 \sim 4.85$ (total 4 H , br $\mathrm{d}, J=8.0 \mathrm{~Hz}$ and $\mathrm{m}, \mathrm{NCHCHCO}, \alpha-\mathrm{CH}(\mathrm{Phe})$, $\alpha-\mathrm{CH}(\mathrm{Leu})), 4.93 \sim 5.17\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH} \mathrm{O}_{2} \mathrm{OCO}\right), 5.65,5.71$ $(0.5 \mathrm{H}, 0.5 \mathrm{H}$, two br, NH), $6.36(0.5 \mathrm{H}, \mathrm{br}, \mathrm{OH})$, $7.10 \sim 7.44(11 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 2, \mathrm{NH})$.

Z-L-Phe-(S)-ProCO-L-Leu-OBu ${ }^{t}$ (14)

A mixture of $40(316.9 \mathrm{mg}, 0.532 \mathrm{mmol})$, pyridinium triffuoroacetate ($51.4 \mathrm{mg}, 0.266 \mathrm{mmol}$), DCC $(329.6 \mathrm{mg}$, 1.597 mmol), anhydrous DMSO (4.0 ml) and benzene $(2.0 \mathrm{ml})$ was stirred at room temperature for 9 hours. The reaction mixture was diluted with EtOAc (25 ml), and the undissolved material was removed by filtration. The filtrate was washed with water $(20 \mathrm{ml})$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After evaporation of the solvent, the product was purified by silica gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2} \sim \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ ($100: 1$) to give 14 as an amorphous solid. This solid was chromatographed on a column of Sephadex LH- 20 with $0.3 \% \mathrm{AcOH}-\mathrm{MeOH}$ elution. Evaporation of the active eluate gave $\mathbf{1 4}$ as an amorphous solid, $264.9 \mathrm{mg}(83.9 \%)$: $\mathrm{Rf} 0.30\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ $\mathrm{MeOH}, 30: 1$); $\mathrm{mp} 43 \sim 46^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{26}-16.5^{\circ}$ (c 0.57 , CHCl_{3}); FAB-MS m/z $594(\mathrm{M}+\mathrm{H})^{+}, 538,504,460,404$, $257,91,70,57,{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.95,0.96$ ($3 \mathrm{H}, 3 \mathrm{H}$, two d, each $J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3} \times 2$), $1.48(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OBu}^{t}\right), 1.53 \sim 2.05\left(6 \mathrm{H}, \mathrm{m}, \beta-\mathrm{CH}_{2}(\mathrm{Leu}), \gamma-\mathrm{CH}(\mathrm{Leu})\right.$, $\mathrm{CH}_{2} \mathrm{CHaHb}$ (pyrrolidinyl)), $2.29(1 \mathrm{H}, \mathrm{m}, \mathrm{CHa} \mathrm{Hb}$ (pyrrolidinyl) $), 2.90(1 \mathrm{H}, \mathrm{dd}, J=7.0,14.0 \mathrm{~Hz}, \beta-\mathrm{CHaHb}(\mathrm{Phe}))$, $3.03 \sim 3.18(2 \mathrm{H}, \mathrm{m}, \beta-\mathrm{CHaHb}(\mathrm{Phe}), \mathrm{NCHaHb}), 3.65(1 \mathrm{H}$, $\mathrm{m}, \mathrm{NCHa} H b), 4.46(1 \mathrm{H}, \mathrm{m}, \alpha-\mathrm{CH}(\mathrm{Leu})), 4.69(1 \mathrm{H}, \mathrm{dt}$, $J=7.0, \quad 8.8 \mathrm{~Hz}, \alpha-\mathrm{CH}(\mathrm{Phe})), 5.02,5.06(2 \mathrm{H}, \mathrm{ABq}$, $\left.J=11.0 \mathrm{~Hz}, \mathrm{PhCH}_{2} \mathrm{OCO}\right), 5.29(1 \mathrm{H}, \mathrm{dd}, J=5.6,9.0 \mathrm{~Hz}$,

NCHCOCO), $5.48(1 \mathrm{H}$, brd, $J=8.8 \mathrm{~Hz}, \mathrm{NH}(\mathrm{Phe}))$, $7.12 \sim 7.42(11 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 2, \mathrm{NH}($ Leu $))$.

Z-L-Phe-(S)-ProCO-L-Leu (15)

14 ($202.9 \mathrm{mg}, 0.342 \mathrm{mmol}$) was deprotected according to the general procedure A to give crude 15 . The product was purified by silica gel column chromatography with $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{AcOH}(200: 2: 1)$ to give 15 as an amorphous solid (130.5 mg). This solid was chromatographed on a column of Sephadex LH-20 with 0.3% $\mathrm{AcOH}-\mathrm{MeOH}$ elution. Evaporation of the active eluate gave 15 as a white powder, $111.7 \mathrm{mg}(62.7 \%)$: Rf 0.34 $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{AcOH}, 95: 5: 1\right) ; \mathrm{mp} 70 \sim 71^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{23}$ $-41.0^{\circ}\left(c 1.9, \mathrm{CHCl}_{3}\right)$; FAB-MS $m / z 538(\mathrm{M}+\mathrm{H})^{+}, 494$, 404, 257, 91, $70 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.94$, $0.95\left(3 \mathrm{H}, 3 \mathrm{H}\right.$, two d, each $\left.J=6.0 \mathrm{~Hz}, \mathrm{CH}_{3} \times 2\right), 1.55 \sim$ $2.03\left(6 \mathrm{H}, \mathrm{m}, \beta-\mathrm{CH}_{2}(\mathrm{Leu}), \gamma-\mathrm{CH}(\mathrm{Leu}), \mathrm{CH}_{2} \mathrm{CHaHb}(\right.$ pyr rolidinyl)), $2.32(1 \mathrm{H}, \mathrm{m}, \mathrm{CHa} H b$ (pyrrolidinyl) $), 2.90(1 \mathrm{H}$, $\mathrm{dd}, J=7.4, \quad 13.6 \mathrm{~Hz}, \beta-\mathrm{CHaHb}(\mathrm{Phe})), 3.03(1 \mathrm{H}, \mathrm{dd}$, $J=7.4,13.6 \mathrm{~Hz}, \beta-\mathrm{CHaH}$ (Phe)), $3.09(1 \mathrm{H}$, overlapping, $\mathrm{NCHaHb}), 3.73(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHaHb}), 4.62(1 \mathrm{H}, \mathrm{m}$, $\alpha-\mathrm{CH}(\mathrm{Leu})), 4.72(1 \mathrm{H}, \mathrm{dt}, J=7.4,9.4 \mathrm{~Hz}, \alpha-\mathrm{CH}($ Phe $))$, $5.01,5.07\left(2 \mathrm{H}, \mathrm{ABq}, J=12.4 \mathrm{~Hz}, \mathrm{PhCH}_{2} \mathrm{OCO}\right), 5.30(1 \mathrm{H}$, $\mathrm{dd}, J=5.8,9.0 \mathrm{~Hz}, \mathrm{NCHCOCO}), 6.30(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}$, NH (Phe)), $7.10 \sim 7.43(11 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 2, \mathrm{NH}($ Leu $)$).

The compounds $\mathbf{1 0}, \mathbf{1 1}, \mathbf{1 6} \sim \mathbf{1 9}, \mathbf{2 3}$ and $\mathbf{2 5}$ were obtained under analogous Z -based stepwise elongation methods.

10: FAB-MS $m / z 594(\mathrm{M}+\mathrm{H})^{+}, 538,494,257 ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.96(6 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3} \times 2(\mathrm{Leu})\right), 1.47\left(9 \mathrm{H}, \mathrm{s}, \mathrm{OBu}^{t}\right)$, ca. $1.40 \sim 2.05(6 \mathrm{H}$, m , overlapping, $\beta-\mathrm{CH}_{2}(\mathrm{Leu}), \gamma-\mathrm{CH}(\mathrm{Leu}), \mathrm{CH}_{2} \mathrm{CHaHb}$ (pyrrolidinyl)), $2.28(1 \mathrm{H}, \mathrm{m}, \mathrm{CHa} H b$ (pyrrolidinyl)), $2.81 \sim 3.20\left(3 \mathrm{H}, \mathrm{m}, \beta-\mathrm{CH}_{2}(\mathrm{Phe}), \mathrm{NCHaHb}\right), 3.61(1 \mathrm{H}$, $\mathrm{m}, \mathrm{NCHaHb}), 4.48(1 \mathrm{H}, \mathrm{m}, \alpha-\mathrm{CH}($ Leu $)), 4.70(1 \mathrm{H}$, brddd, $\alpha-\mathrm{CH}(\mathrm{Phe})), 5.03,5.07(2 \mathrm{H}, \mathrm{ABq}, J=12.4 \mathrm{~Hz}$, $\left.\mathrm{PhCH} \mathrm{O}_{2} \mathrm{OCO}\right), 5.35(1 \mathrm{H}, \mathrm{dd}, J=5.4,8.6 \mathrm{~Hz}, \mathrm{NCHCO}-$ $\mathrm{CO}), 5.52(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{NH}($ Phe $)), 7.10 \sim 7.49(11 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph} \times 2, \mathrm{NH}($ Leu $)$).

11: FAB-MS $m / z 538(\mathrm{M}+\mathrm{H})^{+}, 257 ;{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.95\left(6 \mathrm{H}, \mathrm{d}, J=5.4 \mathrm{~Hz}, \mathrm{CH}_{3} \times 2\right.$ (Leu)), $1.48 \sim 2.09\left(6 \mathrm{H}, \mathrm{m}, \beta-\mathrm{CH}_{2}(\mathrm{Leu}), \gamma-\mathrm{CH}(\mathrm{Leu})\right.$, $\mathrm{CH}_{2} \mathrm{CHaHb}($ pyrrolidinyl) $), 2.26(1 \mathrm{H}, \mathrm{m}, \mathrm{CHaHb}$ (pyrrolidinyl) , $2.87(1 \mathrm{H}, \mathrm{dd}, J=7.5,13.9 \mathrm{~Hz}, \beta-\mathrm{CHaHb}(\mathrm{Phe}))$, $3.05(1 \mathrm{H}, \mathrm{dd}, J=6.4,13.9 \mathrm{~Hz}, \beta-\mathrm{CHaHb}(\mathrm{Phe})), 3.25(1 \mathrm{H}$, $\mathrm{m}, \mathrm{NCHaHb}), 3.75(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHa} H b), 4.56(1 \mathrm{H}, \mathrm{m}$, $\alpha-\mathrm{CH}(\mathrm{Leu})$), $4.69(1 \mathrm{H}$, ddd, overlapping, $\alpha-\mathrm{CH}(\mathrm{Phe}))$, $5.00,5.04\left(2 \mathrm{H}, \mathrm{ABq}, J=12.6 \mathrm{~Hz}, \mathrm{PhCH}_{2} \mathrm{OCO}\right), 5.16(1 \mathrm{H}$, $\mathrm{dd}, J=6.2,7.3 \mathrm{~Hz}, \mathrm{NCHCOCO}), 6.02(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}$, NH (Phe)), $7.10 \sim 7.47(11 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 2, \mathrm{NH}($ Leu $)$).

16: FAB-MS m/z $628(\mathrm{M}+\mathrm{H})^{+}, 572,494,438,291$, 91, 70, 57; ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.39(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OBu}^{t}\right), 1.70 \sim 2.00\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHaHb}(\right.$ pyrrolidinyl $)$), $2.25(1 \mathrm{H}, \mathrm{m}, \mathrm{CHa} H b$ (pyrrolidinyl)), $2.94(1 \mathrm{H}, \mathrm{dd}, J=6.3$, $13.9 \mathrm{~Hz}, \quad \beta-\mathrm{CHaHb}(\mathrm{Phe})), \quad c a . \quad 2.98 \sim 3.25 \quad(4 \mathrm{H}, \quad \mathrm{m}$, overlapping, $\beta-\mathrm{CH}_{2}$ (Phe), $\beta-\mathrm{CHaHb}$ (Phe), NCHaHb), $3.62(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHa} H b), 4.70(2 \mathrm{H}, \mathrm{m}, \alpha-\mathrm{CH} \times 2(\mathrm{Phe}))$, $5.04,5.08\left(2 \mathrm{H}, \mathrm{ABq}, J=12.4 \mathrm{~Hz}, \mathrm{PhCH}_{2} \mathrm{OCO}\right), 5.34(1 \mathrm{H}$,
dd, $J=5.8,8.4 \mathrm{~Hz}, \mathrm{NCHCOCO}), 5.52(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}$, NH), $7.10 \sim 7.45(16 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 3, \mathrm{NH})$.

17: FAB-MS $m / z 538(\mathrm{M}+\mathrm{H})^{+}, 482,438 ;{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.49\left(9 \mathrm{H}, \mathrm{s}, \mathrm{OBu}^{t}\right), 1.70 \sim 2.05(3 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2} \mathrm{CHaHb}($ pyrrolidinyl) $), 2.25(1 \mathrm{H}, \mathrm{m}, \mathrm{CHaHb}$ (pyrrolidinyl) $), 2.91(1 \mathrm{H}, \mathrm{dd}, J=6.5,13.6 \mathrm{~Hz}, \beta-\mathrm{CHaHb}$ (Phe)), ca. $2.97 \sim 3.17$ ($2 \mathrm{H}, \mathrm{m}$, overlapping, β - CHaHb (Phe), NCHaHb), $3.63(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHaHb}), 3.90(1 \mathrm{H}, \mathrm{dd}$, $J=4.9,18.4 \mathrm{~Hz}, \mathrm{CHaHb}(\mathrm{Gly})), 4.07(1 \mathrm{H}$, dd, $J=5.9$, $18.4 \mathrm{~Hz}, \mathrm{CHa} \mathrm{Hb}(\mathrm{Gly})), 4.69(1 \mathrm{H}$, br ddd, $\alpha-\mathrm{CH}(\mathrm{Phe}))$, $5.03,5.06\left(2 \mathrm{H}, \mathrm{ABq}, J=12.5 \mathrm{~Hz}, \mathrm{PhCH} \mathrm{H}_{2} \mathrm{OCO}\right), 5.32(1 \mathrm{H}$, br dd, NCHCOCO), $5.50(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}, \mathrm{NH}(\mathrm{Phe}))$, $7.12 \sim 7.48(11 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 2, \mathrm{NH}(\mathrm{Gly}))$.

18: FAB-MS $m / z 572(\mathrm{M}+\mathrm{H})^{+}, 528,379,291,91$; ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.50 \sim 2.00(3 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CHaHb}$ (pyrrolidinyl)), 2.21 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHaHb}$ (pyrrolidinyl) , $2.73 \sim 3.31\left(5 \mathrm{H}, \mathrm{m}, \beta-\mathrm{CH}_{2} \times 2\right.$ (Phe), NCHaHb$)$, $3.73(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHaHb}), 4.69(1 \mathrm{H}, \mathrm{brdt}, \alpha-\mathrm{CH}(\mathrm{Phe}))$, $4.80(1 \mathrm{H}, \mathrm{brdt}, \alpha-\mathrm{CH}(\mathrm{Phe})), 5.02,5.06(2 \mathrm{H}, \mathrm{ABq}$, $\left.J=12.4 \mathrm{~Hz}, \mathrm{PhCH}_{2} \mathrm{OCO}\right), c a .5 .11(1 \mathrm{H}, \mathrm{m}$, overlapping, $\mathrm{NCHCOCO}), 6.05(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{NH}), 7.05 \sim 7.45$ ($16 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 3, \mathrm{NH}$).

19: FAB-MS $m / z 482(\mathrm{M}+\mathrm{H})^{+}, 279,201 ;{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.50 \sim 2.10\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHaHb}\right.$ (pyrrolidinyl)), $2.28(1 \mathrm{H}, \mathrm{m}, \mathrm{CHaHb}$ (pyrrolidinyl)), $2.75 \sim 3.26\left(3 \mathrm{H}, \mathrm{m}, \beta-\mathrm{CH}_{2}(\mathrm{Phe}), \mathrm{NCHaHb}\right), 3.75(1 \mathrm{H}$, $\mathrm{m}, \mathrm{NCHaHb}), 4.05(1 \mathrm{H}, \mathrm{dd}, J=6.3,18.0 \mathrm{~Hz}, \mathrm{CHaHb}$ (Gly)), 4.14 ($1 \mathrm{H}, \mathrm{dd}, J=5.9,18.0 \mathrm{~Hz}, \mathrm{CHaHb}$ (Gly)), 4.70 ($1 \mathrm{H}, \quad$ brddd, $\alpha-\mathrm{CH}($ Phe $)$), $5.01,5.06(2 \mathrm{H}, ~ A B q$, $\left.J=12.5 \mathrm{~Hz}, \mathrm{PhCH}_{2} \mathrm{OCO}\right), 5.27(1 \mathrm{H}, \mathrm{dd}, J=6.9,8.2 \mathrm{~Hz}$, $\mathrm{NCHCOCO}), \quad 5.75(1 \mathrm{H}, \quad \mathrm{d}, \quad J=8.8 \mathrm{~Hz}, \quad \mathrm{NH}(\mathrm{Phe}))$, $7.10 \sim 7.44(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 2), 7.51(1 \mathrm{H}, \mathrm{brdd}, \mathrm{NH}(\mathrm{Gly}))$.

23: FAB-MS $m / z 608(\mathrm{M}+\mathrm{H})^{+}, 552,508,474,444$, $418,257,91,70,57 ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.95$, $0.96\left(3 \mathrm{H}, 3 \mathrm{H}\right.$, two d, each $\left.J=5.9 \mathrm{~Hz}, \mathrm{CH}_{3} \times 2\right), 1.46(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{OBu}^{t}\right), 1.52 \sim 2.20\left(8 \mathrm{H}, \mathrm{m}, \beta-\mathrm{CH}_{2}(\mathrm{Leu}), \gamma-\mathrm{CH}(\mathrm{Leu})\right.$, $\mathrm{CH}_{2} \mathrm{CHaHb}($ pyrrolidinyl $\left.), ~ \beta-\mathrm{CH}_{2}(\mathrm{Phe})\right), 2.35(1 \mathrm{H}, \mathrm{m}$, CHa Hb (pyrrolidinyl)), $\quad 2.73(2 \mathrm{H}, \quad \mathrm{t}, \quad J=7.8 \mathrm{~Hz}, \quad \gamma-$ $\left.\mathrm{CH}_{2}(\mathrm{Hph})\right), 3.37(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHaHb}), 3.62(1 \mathrm{H}, \mathrm{m}$, $\mathrm{NCHa} H b), 4.47(1 \mathrm{H}, \mathrm{ddd}, J=5.6,8.6,8.6 \mathrm{~Hz}, \alpha-$ $\mathrm{CH}(\mathrm{Leu})), 4.54(1 \mathrm{H}$, br ddd, $\alpha-\mathrm{CH}(\mathrm{Hph})), 5.09,5.12(2 \mathrm{H}$, $\left.\mathrm{ABq}, J=12.2 \mathrm{~Hz}, \mathrm{PhCH}{ }_{2} \mathrm{OCO}\right), 5.35(1 \mathrm{H}, \mathrm{dd}, J=5.4$, $8.4 \mathrm{~Hz}, \mathrm{NCHCOCO}), 5.58(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{NH}(\mathrm{Hph}))$, $7.12 \sim 7.42(11 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 2, \mathrm{NH}(\mathrm{Leu}))$.

25: FAB-MS m / z 447(M+H) ${ }^{+}$, 391, 347, 284; ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.83 \sim 1.03\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \times 2\right)$, 1.47 ($9 \mathrm{H}, \mathrm{s}, \mathrm{OBu}^{t}$), ca. $1.35 \sim 2.09(6 \mathrm{H}, \mathrm{m}$, overlapping, $\beta-\mathrm{CH}_{2}(\mathrm{Leu}), \quad \gamma-\mathrm{CH}(\mathrm{Leu}), \quad \mathrm{CH}_{2} \mathrm{CHaHb}$ (pyrrolidinyl)), $2.38\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHaHb}\right.$ (pyrrolidinyl)), $3.58\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right)$, $4.45(1 \mathrm{H}, \mathrm{m}, \alpha-\mathrm{CH}(\mathrm{Leu})), 5.02,5.17$ and $5.03,5.16(2 \mathrm{H}$, two $\mathrm{ABq}, J=12.4 \mathrm{~Hz}$ and $J=10.2 \mathrm{~Hz}, \mathrm{PhCH}_{2} \mathrm{OCO}$), $5.25,5.29(1 \mathrm{H}$, two dd, $J=4.6,9.8 \mathrm{~Hz}, J=4.6,9.4 \mathrm{~Hz}$, $\mathrm{NCHCOCO}), 7.10 \sim 7.42(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, \mathrm{NH})$.
(RS)-N-Cyclohexyl-2-[(S)-2-(1-t-butoxycarbonyl-pyrrolidinyl)]-2-hydroxyacetoamide (Boc- $\mathrm{H}_{2} \mathrm{ProCO}$ NHcHx 42)
$30(1.64 \mathrm{~g}, 6.69 \mathrm{mmol})$ was coupled to cyclohexylamine
$(0.922 \mathrm{ml}, 8.04 \mathrm{mmol})$ according to the general procedure B to give crude 42. The product was purified by Sephadex LH-20 column chromatography with MeOH to give $\mathbf{4 2}$ as a solid, $2.11 \mathrm{~g}(96.6 \%)$: $\mathrm{Rf} 0.39,0.47\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right.$, $30: 1$); FAB-MS $m / z 327(\mathrm{M}+\mathrm{H})^{+}, 271,227,114,70$, $57 ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.00 \sim c a .1 .50(5 \mathrm{H}$, m, overlapping, $\mathrm{CH}_{2} \times 2, \mathrm{CHaHb}$ (cyclohexyl)), 1.46, 1.49 $\left(4.5 \mathrm{H}, 4.5 \mathrm{H}\right.$, two s, Boc), $1.53 \sim 2.29\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2\right.$, CHaHb (cyclohexyl), $\mathrm{CH}_{2} \mathrm{CHaHb}($ pyrrolidinyl)), 2.46 $(1 \mathrm{H}, \mathrm{m}, \mathrm{CHaHb}), 3.12 \sim 3.57\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 3.73(1 \mathrm{H}$, $\mathrm{m}, \mathrm{NCH}), 3.94,4.08(0.5 \mathrm{H}, 0.5 \mathrm{H}$, br s, brt, NCHCHOH$)$, $3.94,4.23(0.5 \mathrm{H}, 0.5 \mathrm{H}$, brs, brd, CHOH$), 6.14,6.19$ $(0.5 \mathrm{H}, 0.5 \mathrm{H}$, br d, br, OH$), 6.81,6.91(0.5 \mathrm{H}, 0.5 \mathrm{H}, \mathrm{brd}$, br, NH).

The compound 20 was prepared from 42 under Boc-based stepwise elongation methods.

20: FAB-MS $m / z 506(\mathrm{M}+\mathrm{H})^{+}, 225,91,70 ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.05 \sim 1.50\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2\right.$, $\mathrm{CHaHb}\left(\right.$ cyclohexyl)), $\quad 1.54 \sim 2.05\left(8 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \times 2\right.$, CHaHb (cyclohexyl), $\mathrm{CH}_{2} \mathrm{CHaHb}$ (pyrrolidinyl)), 2.32 $(1 \mathrm{H}, \mathrm{m}, \mathrm{CHaHb}$ (pyrrolidinyl)), $2.91(1 \mathrm{H}, \mathrm{dd}, J=6.9$, $13.9 \mathrm{~Hz}, \beta-\mathrm{CHaHb}(\mathrm{Phe})$), $3.00 \sim 3.20(2 \mathrm{H}, \mathrm{m}, \mathrm{NCHaHb}$, β - $\mathrm{CHa} H b$ (Phe)), $3.55 \sim 3.85$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCHaHb}$, NCH (cyclohexyl)), $4.70(1 \mathrm{H}, \mathrm{ddd}, J=6.9,7.1,8.9 \mathrm{~Hz}, \alpha-$ $\mathrm{CH}(\mathrm{Phe})), 5.03,5.06\left(2 \mathrm{H}, \mathrm{ABq}, J=12.4 \mathrm{~Hz}, \mathrm{PhCH}_{2}-\right.$ OCO), $5.32(1 \mathrm{H}, \mathrm{dd}, J=5.4,8.1 \mathrm{~Hz}, \mathrm{NCHCOCO}), 5.50$ $(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{NH}(\mathrm{Phe})), 6.78(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}$, $\mathrm{NH}), 7.10 \sim 7.46(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 2)$.

Boc-D-Leucine- t-butylamide(Boc-d-Leu-NHBu ${ }^{t}$, 43)
Boc-D-leucine hydrate $(623.6 \mathrm{mg}, 2.50 \mathrm{mmol})$ was coupled to t-butylamine ($190.2 \mathrm{mg}, 2.60 \mathrm{mmol}$) according to the general procedure B to give crude 43 . The product was purified by silica gel column chromatography with hexane-EtOAc (4:1) to give 43 as a solid, 635.4 mg (88.7%): Rf $0.56\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 30: 1\right)$; mp $138 \sim$ $143^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}+44.2^{\circ}\left(c 1.7, \mathrm{CHCl}_{3}\right)$; FAB-MS $m / z 287$ $(\mathrm{M}+\mathrm{H})^{+}, 231,187,131,57,{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 0.93,0.94\left(3 \mathrm{H}, 3 \mathrm{H}\right.$, two d, each $\left.J=6.1 \mathrm{~Hz}, \mathrm{CH}_{3} \times 2\right)$, $1.34\left(9 \mathrm{H}, \mathrm{s}, \mathrm{NBu}^{t}\right), 1.44(9 \mathrm{H}, \mathrm{s}, \mathrm{Boc}), c a .1 .30 \sim 1.80(3 \mathrm{H}$, m , overlapping, $\beta-\mathrm{CH}_{2}(\mathrm{Leu}), \gamma-\mathrm{CH}($ Leu $)$), $3.94(1 \mathrm{H}$, br ddd, $\alpha-\mathrm{CH}(\mathrm{Leu})), 4.90(1 \mathrm{H}$, brd, NH), $5.92(1 \mathrm{H}$, br s, NH).

Z-H2 ProCO-d-Leu-NHBu ${ }^{t}$ (44)

43 ($588.0 \mathrm{mg}, 2.053 \mathrm{mmol}$) was deprotected according to the general procedure A , and was coupled to $\mathbf{3 8}$ ($573.9 \mathrm{mg}, 2.05 \mathrm{mmol}$) according to the general procedure B to give crude 44. The product was purified by silica gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (100:1) to give 44 as an amorphous solid, 659.8 mg (71.9\%): Rf $0.48\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 20: 1\right)$; FAB-MS m / z $448(\mathrm{M}+\mathrm{H})^{+}, 375,314,262,204,160,91,70,57 ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.91,0.94(3 \mathrm{H}, 3 \mathrm{H}$, two d, each $\left.J=5.9 \mathrm{~Hz}, \mathrm{CH}_{3} \times 2\right), 1.33\left(9 \mathrm{H}, \mathrm{s}, \mathrm{NBu}^{t}\right), 1.40 \sim 2.04$ ($6 \mathrm{H}, \mathrm{m}, \beta-\mathrm{CH}_{2}(\mathrm{Leu}), \gamma-\mathrm{CH}(\mathrm{Leu}), \mathrm{CH}_{2} \mathrm{CHaHb}$ (pyrrolidinyl)), 2.33 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHa} H b$ (pyrrolidinyl)), $3.36 \sim 3.63$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 3.92 \sim 4.36(3 \mathrm{H}, \mathrm{m}, \mathrm{CHCHOH}$,
$\alpha-\mathrm{CH}(\mathrm{Leu})), 5.17\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2} \mathrm{OCO}\right), 5.86(1 \mathrm{H}, \mathrm{br}$, $\mathrm{OH}), 5.93(1 \mathrm{H}$, brs, NH), $7.19(1 \mathrm{H}$, brd, $\mathrm{NH}($ Leu $))$, $7.30 \sim 7.44(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

$\mathrm{Bz}^{-\mathrm{H}_{2}} \mathrm{ProCO}^{-\mathrm{D}-L e u-N H B u}{ }^{t}$ (45)

To a solution of $44(560.3 \mathrm{mg}, 1.251 \mathrm{mmol})$ in MeOH $(6 \mathrm{ml})$ was added palladium-black catalyst (20 mg). The mixture was hydrogenated at room temperature in a hydrogen atmosphere for 7 hours. The catalyst was filtered off, evaporation of the solvent gave amorphous solid of $\mathrm{H}_{2} \mathrm{ProCO}-\mathrm{d}-L e u-\mathrm{NHBu}^{t}(46)$.

To a solution of $46(99.6 \mathrm{mg}, 0.318 \mathrm{mmol})$ in anhydrous THF (1.0 ml) was added triethylamine ($56 \mu \mathrm{l}$, 0.397 mmol), and the solution was treated dropwise with benzoyl chloride ($46 \mu \mathrm{l}, 0.397 \mathrm{mmol}$) in anhydrous THF $(2 \mathrm{ml})$ over a period of 30 minutes. The mixture was stirred for additional 2 hours at room temperature, and the solvent was evaporated. To the mixture was added $1 \mathrm{NHCl}(3 \mathrm{ml})$, and the mixture was extracted thrice with EtOAc (each 4 ml). The combined extracts were washed with saturated aq $\mathrm{NaHCO}_{3}(8 \mathrm{ml})$ and saturated aq NaCl (8 ml), and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After removal of the solvent, the product was purified by Sephadex LH- 20 column chromatography with MeOH to give $\mathbf{4 5}$ as an amorphous solid, $124.9 \mathrm{mg}(94.1 \%)$: $\mathrm{Rf} 0.36,0.41\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right.$, 20: 1); FAB-MS m/z $418(\mathrm{M}+\mathrm{H})^{+}, 345,317,314,232$, 204, 174, 105, 70, 57.

Bz-(S)-ProCO-D-Leu-NHBut ${ }^{t}$ (28)

Crude 28 was prepared from 45 under analogous synthetic procedure as described for the preparation of $\mathbf{1 4}$ from 40. The product was purified by silica gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}(7: 1)$ to give an amorphous solid. This solid was chromatographed on a column of Sephadex LH-20 with $0.3 \% \mathrm{AcOH}-\mathrm{MeOH}$ elution. Evaporation of the active eluate gave 28 as an amorphous solid, $93.4 \mathrm{mg}(75.3 \%)$: Rf $0.48\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ $\mathrm{MeOH}, 20: 1$); mp $66 \sim 69^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{24}+18.2^{\circ}$ (c 1.2 , CHCl_{3}); FAB-MS m/z $416(\mathrm{M}+\mathrm{H})^{+}, 343,315,312,230$, 202, 187, 174, 105, 70, 57, ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.95\left(6 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{3} \times 2\right), 1.24\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right)$, $1.41 \sim 2.17\left(6 \mathrm{H}, \mathrm{m}, \beta-\mathrm{CH}_{2}(\mathrm{Leu}), \gamma-\mathrm{CH}(\mathrm{Leu}), \mathrm{CH}_{2} \mathrm{CHa}-\right.$ Hb (pyrrolidinyl)), $2.40(1 \mathrm{H}, \mathrm{m}, \mathrm{CHaHb}$ (pyrrolidinyl)), $3.56(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHaHb}), 3.70(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHa} H b), 4.31$ $(1 \mathrm{H}$, ddd, $J=5.2,8.9,8.9 \mathrm{~Hz}, \alpha-\mathrm{CH}(\mathrm{Leu})), 5.22(1 \mathrm{H}$, br dd, NCHCOCO), $5.89(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 7.10(1 \mathrm{H}, \mathrm{d}$, $J=8.9 \mathrm{~Hz}, \mathrm{NH}(\mathrm{Leu})$), $7.35 \sim 7.64$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).

The compound 24 was prepared under an analogous synthetic procedure as described for the preparation of 14 from 40.
24: FAB-MS $m / z 441(\mathrm{M}+\mathrm{H})^{+}, 355,257,196,168$; ${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.95,0.96(3 \mathrm{H}, 3 \mathrm{H}$, two d , each $\left.J=6.1 \mathrm{~Hz}, \mathrm{CH}_{3} \times 2\right), 1.05\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 1.53 \sim 2.09$ ($6 \mathrm{H}, \mathrm{m}, \beta-\mathrm{CH}_{2}(\mathrm{Leu}), \gamma-\mathrm{CH}(\mathrm{Leu}), \mathrm{CH}_{2} \mathrm{CHaHb}$ (pyrrolidinyl) $), 2.18,2.24\left(2 \mathrm{H}, \mathrm{ABq}, J=13.6 \mathrm{~Hz}, \mathrm{COCH}_{2} \mathrm{Bu}^{t}\right), 2.30$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHaHb}$ (pyrrolidinyl)), $3.62\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 4.46$ ($1 \mathrm{H}, \mathrm{ddd}, J=5.8,8.5,8.5 \mathrm{~Hz}, \alpha-\mathrm{CH}(\mathrm{Leu})$), $5.31(1 \mathrm{H}, \mathrm{dd}$, $J=5.5,6.0 \mathrm{~Hz}, \mathrm{NCHCOCO}), 7.21(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}$,

NH(Leu)).
The compound 26 was prepared from $\mathbf{4 6}$ by the general procedure B .

26: FAB-MS $m / z \quad 593(\mathrm{M}+\mathrm{H})^{+}, 312 ;{ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.95\left(6 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{CH}_{3} \times 2\right.$ (Leu)), $1.35\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 1.49 \sim 2.05\left(6 \mathrm{H}, \mathrm{m}, \beta-\mathrm{CH}_{2}(\mathrm{Leu})\right.$, $\gamma-\mathrm{CH}(\mathrm{Leu}), \mathrm{CH}_{2} \mathrm{CHaHb}($ pyrrolidinyl) $), 2.28(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHa} H b$ (pyrrolidinyl)), $2.92(1 \mathrm{H}$, dd, $J=6.6,13.6 \mathrm{~Hz}$, $\beta-\mathrm{CHaHb}(\mathrm{Phe})$), ca. $2.95 \sim 3.18$ (2 H , m, overlapping, β - $\mathrm{CHa} H b$ (Phe) , NCHaHb), $3.61(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHa} H b), 4.25$ $(1 \mathrm{H}, \mathrm{m}, \alpha-\mathrm{CH}(\mathrm{Leu})), 4.69(1 \mathrm{H}$, br ddd, $\alpha-\mathrm{CH}(\mathrm{Phe})), 5.03$, $5.07\left(2 \mathrm{H}, \mathrm{ABq}, J=12.5 \mathrm{~Hz}, \mathrm{Ph} \mathrm{CH}_{2} \mathrm{OCO}\right), 5.32(1 \mathrm{H}$, brdd, NCHCOCO), $5.52(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{NH}($ Phe $))$, $5.70(1 \mathrm{H}, \mathrm{s}, \mathrm{CONH}), 7.15 \sim 7.45(11 \mathrm{H}, \mathrm{m}, \mathrm{Ph} \times 2$, NH(Leu)).

The compounds 27 and 29 were prepared under analogous synthetic procedures as described for the preparation of 28 from 45.

27: FAB-MS $m / z 422(\mathrm{M}+\mathrm{H})^{+}, 349,321,312,256$, 236, 208, 187, 180, 83, 70, 57; ${ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 0.93\left(6 \mathrm{H}, \mathrm{d}, J=6 \mathrm{~Hz}, \mathrm{CH}_{3} \times 2\right), 1.00 \sim 2.14$ $\left(16 \mathrm{H}, \mathrm{m}, \beta-\mathrm{CH}_{2}(\mathrm{Leu}), \gamma-\mathrm{CH}(\mathrm{Leu}), \mathrm{CH}_{2} \mathrm{CHaHb}\right.$ (pyrrolidinyl), $\mathrm{CH}_{2} \times 5$ (cyclohexyl)), $1.35\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}\right), 2.17 \sim 2.44$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CHaHb}$ (pyrrolidinyl), CH (cyclohexyl)), $3.54 \sim$ $3.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 4.26(1 \mathrm{H}$, ddd, $J=5.6,8.9,8.9 \mathrm{~Hz}$, $\alpha-\mathrm{CH}(\mathrm{Leu})), 5.10(1 \mathrm{H}, \mathrm{dd}, J=6.3,8.6 \mathrm{~Hz}, \mathrm{NHCOCO})$, $5.85(1 \mathrm{H}, \mathrm{br} s, \mathrm{NH}), 7.11(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{NH}(\mathrm{Leu}))$.

29: FAB-MS $m / z 361(\mathrm{M}+\mathrm{H})^{+}, 305,202,174,105$, $57 ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.49\left(9 \mathrm{H}, \mathrm{s}, \mathrm{OBu}^{t}\right)$, $1.91 \sim 2.11\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHaHb}\right.$ (pyrrolidinyl)), $2.42(1 \mathrm{H}$, $\mathrm{m}, \mathrm{CHaH}$ (pyrrolidinyl)), $3.54 \sim 3.77\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right)$, 3.93 ($1 \mathrm{H}, \mathrm{dd}, J=4.9,18.5 \mathrm{~Hz}, \mathrm{CHaHb}(\mathrm{Gly})$), 4.07 (1 H , dd, $J=5.9,18.5 \mathrm{~Hz}, \mathrm{CHa} H b(\mathrm{Gly})$), $5.44(1 \mathrm{H}, \mathrm{dd}, J=5.6$, $7.9 \mathrm{~Hz}, \mathrm{NCHCOCO}), 7.30 \sim 7.62(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, \mathrm{NH}(\mathrm{Gly}))$.

References

1) Aoyagi, T.; M. Nagai, K. Ogawa, F. Kohma, M. Okada, T.Ikeda, M. Hamada \& T. Takeuchi: Poststatin, a new inhibitor of prolyl endopeptidase, produced by Streptomyces viridochromogenes MH534-30F3. I. Taxonomy, production, isolation, physico-chemical properties and biological activities. J. Antibiotics 44: 949~955, 1991
2) Nagar, M.; K. Ogawa, Y. Muraoka, H. Naganawa, T. Aoyagi \& T. Takeuchi: Poststatin, a new inhibitor of prolyl endopeptidase, produced by Streptomyces viridochromogenes MH534-30F3. II. Structure determination and inhibitory activities. J. Antibiotics 44: 956~961, 1991
3) Tsuda, M.; Y. Muraoka, M. Nagai, T. Aoyagi \& T. Takeuchi: Poststatin, a new inhibitor of prolyl endopeptidase. III. Optical resolution of 3-amino-2hydroxyvaleric acid and absolute configuration of poststatin. J. Antibiotics 49: 281~286, 1996
4) Tsuda, M.; Y. Muraoka, M. Nagai, T. Aoyagi \& T. Takevehi: Poststatin, a new inhibitor of prolyl endopeptidase. V. Endopeptidase inhibitory activity of poststatin analogues. J. Antibiotics, 49: 890~899, 1996
5) Yoshimoto, T.; R. C. Orlowski \& R. Walter: Postproline cleaving enzyme. Identification as serine protease using active site specific inhibitors. Biochemistry

16: 2942~2948, 1977
6) Wilk, S. \& M. Orlowski: Inhibition of rabbit brain prolyl endopeptidase by N-benzyloxycarbonyl-prolyl-prolinal, a transition state aldehyde inhibitor. J. Neurochem. 41: $69 \sim 75,1983$
7) Tsuru, D.; T. Yoshimoto, N. Koriyama \& S. Furukawa: Thiazolidine derivatives as potent inhibitors specific for prolyl endopeptidase. J. Biochem. 104: 580~586, 1988
8) Saito, M.; M. Hashimoto, N. Kawaguchi, H. Shibata,
H. Fukami, T. Tanaka \& N. Higuchi: Synthesis and inhibitory activity of acyl-peptidyl-pyrrolidine derivatives toward post-proline cleaving enzyme; a study of subsite specificity. J. Enzyme Inhibition 5: 51~75, 1991
9) Tsuda, M.; Y. Muraoka, M. Nagai, T. Aoyagi \& T. Takeuchi: Poststatin, a new inhibitor of prolyl endopeptidase. IV. The chemical synthesis of poststatin. J. Antibiotics 49: 287~291, 1996

